Low-Dose Methylmercury-Induced Apoptosis and Mitochondrial DNA Mutation in Human Embryonic Neural Progenitor Cells
نویسندگان
چکیده
Methylmercury (MeHg) is a long-lasting organic pollutant primarily found in the aquatic environment. The developing brain is particularly sensitive to MeHg due to reduced proliferation of neural stem cell. Although several mechanisms of MeHg-induced apoptosis have been defined in culture models, it remains unclear whether mitochondrial DNA (mtDNA) mutation is involved in the toxic effect of MeHg, especially in the neural progenitor cells. In the present study, the ReNcell CX cell, a human neural progenitor cells (hNPCs) line, was exposed to nanomolar concentrations of MeHg (≤50 nM). We found that MeHg altered mitochondrial metabolic function and induced apoptosis. In addition, we observed that MeHg induced ROS production in a dose-dependent manner in hNPCs cells, which was associated with significantly increased expressions of ND1, Cytb, and ATP6. To elucidate the mechanism underlying MeHg toxicity on mitochondrial function, we examined the ATP content and mitochondrial membrane potential in MeHg-treated hNPCs. Our study showed that MeHg exposure led to decreased ATP content and reduced mitochondrial membrane potential, which failed to match the expansion in mtDNA copy number, suggesting impaired mtDNA. Collectively, these results demonstrated that MeHg induced toxicity in hNPCs through altering mitochondrial function and inducing oxidative damage to mtDNA.
منابع مشابه
Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells
Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to Me...
متن کاملEffects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells
The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived fro...
متن کاملComparison of BAX and Bcl-2 Expression During Human Embryonic Stem Cell Differentiation into Cardiomyocytes and Doxorubicin-induced Apoptosis
Back ground: Although the cell differentiation is an inseparable part of development in multicellular organisms, the regulating molecular pathway of it still is not fully defined. In the other hand, apoptosis is a fundamental physiological process which plays an essential role in a variety of biological events during development. Moreover, recent studies have found that apoptosis shows several ...
متن کاملIn vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation
The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This r...
متن کاملEvaluation of Apoptosis in Multipotent Hematopoietic Cells of Bone Marrow by Anthracycline Antibiotics
Anthracycline antibiotics are potent anticancer drugs widely used in the treatment of solidtumors and hematological malignancies. Because of their extensive clinical use and their toxiceffect on normal cells, in the present study the effect of these drugs on multipotent hematopoieticbone marrow cells was investigated employing, viability tests, PARP cleavage, Hoechst 33258staining, DNA fragment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016